172 research outputs found

    Specimen Catalog

    Get PDF

    Can Ecological Interactions be Inferred from Spatial Data?

    Get PDF
    The characterisation and quantication of ecological interactions, and the construction of species distributions and their associated ecological niches, is of fundamental theoretical and practical importance. In this paper we give an overview of a Bayesian inference framework, developed over the last 10 years, which, using spatial data, offers a general formalism within which ecological interactions may be characterised and quantied. Interactions are identied through deviations of the spatial distribution of co-occurrences of spatial variables relative to a benchmark for the non-interacting system, and based on a statistical ensemble of spatial cells. The formalism allows for the integration of both biotic and abiotic factors of arbitrary resolution. We concentrate on the conceptual and mathematical underpinnings of the formalism, showing how, using the Naive Bayes approximation, it can be used to not only compare and contrast the relative contribution from each variable, but also to construct species distributions and niches based on arbitrary variable type. We show how the formalism can be used to quantify confounding and therefore help disentangle the complex causal chains that are present in ecosystems. We also show species distributions and their associated niches can be used to infer standard "micro" ecological interactions, such as predation and parasitism. We present several representative use cases that validate our framework, both in terms of being consistent with present knowledge of a set of known interactions, as well as making and validating predictions about new, previously unknown interactions in the case of zoonoses

    Nonequilibrium evolution of volatility in origination and extinction explains fat-tailed fluctuations in Phanerozoic biodiversity

    Get PDF
    Fluctuations in biodiversity, large and small, pervade the fossil record, yet we do not understand the processes generating them. Here, we extend theory from nonequilibrium statistical physics to describe the fat-tailed form of fluctuations in Phanerozoic marine invertebrate richness. Using this theory, known as superstatistics, we show that heterogeneous rates of origination and extinction between clades and conserved rates within clades account for this fat-tailed form. We identify orders and families as the taxonomic levels at which clades experience interclade heterogeneity and within-clade homogeneity of rates, indicating that families are subsystems in local statistical equilibrium, while the entire system is not. The separation of timescales between within-clade background rates and the origin of major innovations producing new orders and families allows within-clade dynamics to reach equilibrium, while between-clade dynamics do not. The distribution of different dynamics across clades is consistent with niche conservatism and pulsed exploration of adaptive landscapes.Fil: Rominger, Andrew J.. No especifíca;Fil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastián; ChileFil: Marquet, Pablo A.. Pontificia Universidad Católica de Chile; Chile. Instituto de Ecología y Biodiversidad; Chile. Universidad Nacional Autónoma de México; Méxic

    Extra-metabolic energy use and the rise in human hyper-density

    Get PDF
    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet

    Mammal and butterfly species richness in Chile: taxonomic covariation and history

    Get PDF
    ABSTRACT Understanding species richness spatial distribution is of fundamental importance to face the current biodiversity crisis that affects biotas around the world. Taxonomical covariation in species occurrence may offer the possibility to identify common factors that restrict species richness, as well as some guidelines to the identification of key areas for conservation purposes. To this aim, we analyze the geographic distribution of mammals and butterflies in Chile using 0.5° latitude and longitude quadrats. We found that, for both taxa, there is a strong bell-shaped latitudinal gradient in species richness with a peak at mid-latitudes (33-43° S). The results from multiple stepwise regression analysis shows that for both taxa productivity measured using the Normalized Difference Vegetation Index (NDVI) is the most important variable driving changes in species richness followed by glaciation and elevation depending on the taxa. Mid-domain effects were either weak or unimportant in affecting the richness pattern. Variance partitioning analysis shows that the spatial components alone are irrelevant to the richness pattern. We show that spatial covariation in richness of butterflies and mammals, is strongly influenced by spatial scale, possibly as the result of a scale-dependent effects on individual species ranges, whereas factors related to specific ecological characteristics, are more important at smaller scales. Because richness gradients are ultimately the product of speciation and colonization processes on longer time scales, we propose that species richness gradients in Chile may be explained by the interaction between historical processes associated to desertification and glaciation together with productivity. The former sets the domain within which productivity produces a similar richness pattern for both taxa despite their different phylogenetic histories and physiological requirements. Key words: lepidoptera, mammalia, Chile, latitudinal gradient, species richness. RESUMEN Comprender la distribución espacial de la riqueza de especies es un aspecto de fundamental importancia para enfrentar la actual crisis que afecta a las biotas del mundo. En este sentido, el estudio de la covariación taxonómica en el espacio nos da la posibilidad de identificar factores comunes que restringen la riqueza, además de ofrecer una oportunidad para identificar áreas claves para la conservación. Con este propósito, analizamos la distribución geográfica de mamíferos y mariposas en Chile usando cuadrículas de 0,5° de latitud y longitud. Para ambos taxa, existe una distribución latitudinal unimodal con un máximo de riqueza a latitudes intermedias (33-43° S). Usando una regresión múltiple paso a paso mostramos que la productividad es el factor gravitante para explicar la riqueza de ambos taxones seguido por efectos asociados a glaciaciones y elevación según sea el taxa. Efectos asociados al dominio medio muestran ser débiles o no significantes para determinar la distribución latitudinal de la riqueza en Chile. Un ánalisis de partición de varianza muestra que componentes exclusivamente espaciales son también irrelevantes para explicar el patrón de riqueza. Mostramos que la covariación entre la riqueza de mariposas y mamíferos está fuertemente influenciada por la escala espacial, posiblemente producto de efectos que actúan sobre los rangos de distribución a distintas escalas, mientras que factores relacionados con características ecológicas son más importantes a escalas pequeñas. Debido a que los gradientes de riqueza son en último término producto de procesos de especiación 136 SAMANIEGO & MARQUET y colonización, proponemos que la riqueza de especies en Chile podría explicarse por la interacción entre procesos históricos asociados con desertificación y glaciación junto a procesos relacionados con la productividad. En este contexto, procesos históricos determinarían el dominio en que factores asociados a la productividad condicionan el patrón de riqueza para ambos taxones a pesar de estos tener historias filogenéticas y requerimientos fisiológicos distintos

    SYMPOSIUM: ECOSYSTEM DISRUPTIONS IN THE AMERICAS

    Full text link

    A review on coastal urban ecology: research gaps, challenges, and needs

    Get PDF
    Coastal urban areas have dramatically increased during the last decades, however, coastal research integrating the impacts and challenges facing urban areas is still scarce. To examine research advances and critical gaps, a review of the literature on coastal urban ecology was performed. Articles were selected following a structured decision tree and data were classified into study disciplines, approaches, type of analysis, main research objectives, and Pickett's paradigms in-, of-, and for- the city, among other categories. From a total of 237 publications, results show that most of the research comes from the USA, China, and Australia, and has been carried out mostly in large cities with populations between 1 and 5 million people. Focus has been placed on ecological studies, spatial and quantitative analysis and pollution in coastal urban areas. Most of the studies on urban ecology in coastal zones were developed at nearshore terrestrial environments and only 22.36% included the marine ecosystem. Urban ecological studies in coastal areas have mainly been carried out under the paradigm in the city with a focus on the disciplines of biology and ecology. Results suggest a series of disciplinary, geographical, and approach biases which can present a number of risks. Foremost among these is a lack of knowledge on social dimensions which can impact on sustainability. A key risk relates to the fact that lessons and recommendations of research are mainly from developed countries and large cities which might have different institutional, planning and cultural settings compared to developing and mid-income countries. Scientific research on coastal urban areas needs to diversify toward an ecology of and for the cities, in order to support coastal development in a diversity of countries and settings

    Natural landscape, infrastructure, and health : The physical activity implications of urban green space composition among the elderly

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552This project was funded by the RecerCaixa research fund in the 2016 call, under the original title of Ciudad, calidad de vida y movilidad activa en la tercera edad: Un análisis multimetodológico a través de Tracking Living Labs.Urban green spaces (UGS) have been linked with a series of benefits for the environment, and for the physical health and well-being of urban residents. This is of great importance in the context of the aging of modern societies. However, UGS have different forms and characteristics that can determine their utilization. Common elements in UGS such as the type of vegetation and the type of surface are surprisingly understudied in regard to their relationship with the type of activity undertaken in UGS. This paper aims to explore the relationship between landscape diversity and the type of surface with the time spent and the physical activity intensity performed by seniors. To do so, this study uses GPS tracking data in combination with accelerometer data gathered from 63 seniors residing in Barcelona, Spain. Results showed that senior participants spent little time inside the analyzed UGS and sedentary behaviors (SBs) were more common than physical activities (PAs). The presence of pavement surfaces positively influenced the total time spent in UGS while gravel surfaces were negatively associated with time spent in active behaviors. The provision of well-defined and maintained paved areas and paths are some key infrastructures to be considered when designing UGS for overall urban residents and, especially, when aiming to potentiate the access for senior visitors

    Body Mass of Late Quaternary Mammals (Data Set)

    Get PDF
    The purpose of this data set was to compile body mass information for all mammals on Earth so that we could investigate the patterns of body mass seen across geographic and taxonomic space and evolutionary time. We were interested in the heritability of body size across taxonomic groups (How conserved is body mass within a genus, family, and order?), in the overall pattern of body mass across continents (Do the moments and other descriptive statistics remain the same across geographic space?), and over evolutionary time (How quickly did body mass patterns iterate on the patterns seen today? Were the Pleistocene extinctions size specific on each continent, and did these events coincide with the arrival of man?). These data are also part of a larger project that seeks to integrate body mass patterns across very diverse taxa (NCEAS Working Group on Body Size in Ecology and Paleoecology: linking pattern and process across space, time, and taxonomic scales). We began with the updated version of D. E. Wilson and D. M. Reeder’s taxonomic list of all known Recent mammals of the world (N 5 4629 species) to which we added status, distribution, and body mass estimates compiled from the primary and secondary literature. Whenever possible, we used an average of male and female body mass, which was in turn averaged over multiple localities to arrive at our species body mass values. The sources are line referenced in the main data set, with the actual references appearing in a table within the metadata. Mammals have individual records for each continent they occur on. Note that our data set is more than an amalgamation of smaller compilations. Although we relied heavily on a data set for Chiroptera by K. E. Jones (N 5 905), the CRC handbook of Mammalian Body Mass (N 5 688), and a data set compiled for South America by P. Marquet (N 5 505), these represent less than half the records in the current database. The remainder are derived from more than 150 other sources. Furthermore, we include a comprehensive late Pleistocene species assemblage for Africa, North and South America, and Australia (an additional 230 species). ‘‘Late Pleistocene’’ is defined as approximately 11 ka for Africa, North and South America, and as 50 ka for Australia, because these times predate anthropogenic impacts on mammalian fauna. Estimates contained within this data set represent a generalized species value, averaged across sexes and geographic space. Consequently, these data are not appropriate for asking population-level questions where the integration of body mass with specific environmental conditions is important. All extant orders of mammals are included, as well as several archaic groups (N 5 4859 species). Because some species are found on more than one continent (particularly Chiroptera), there are 5731 entries. We have body masses for the following: Artiodactyla (280 records), Bibymalagasia (2 records), Carnivora (393 records), Cetacea (75 records), Chiroptera (1071 records), Dasyuromorphia (67 records), Dermoptera (3 records), Didelphimorphia (68 records), Diprotodontia (127 records), Hydracoidea (5 records), Insectivora (234 records), Lagomorpha (53 records), Litopterna (2 records), Macroscelidea (14 records), Microbiotheria (1 record), Monotremata (7 records), Notoryctemorphia (1 record), Notoungulata (5 records), Paucituberculata (5 records), Peramelemorphia (24 records), Perissodactyla (47 records), Pholidota (8 records), Primates (276 records), Proboscidea (14 records), Rodentia (1425 records), Scandentia (15 records), Sirenia (6 records), Tubulidentata (1 record), and Xenarthra (75 records)
    corecore